

Block Spec for Bitcoin

Layout: Specification
Date: 2017-08-26

Activation: 1515888000
Version: 1.0

This section of the Bitcoin (BSV) specification ("spec") documents the block data structure
for implementing a compatible BSV client, including the block header, block serialization,
and coinbase transaction formats.

1/9

Block

A block is one of the two base primitives in the BSV system, the other being a transaction.
Primitive in this context means it is one of the data structures for which the BSV software
provides built-in support. Nodes collect new transactions into a block, hash them into a hash
tree (merkle root hash), and scan through nonce values to make the block's hash satisfy
proof-of-work requirements. When a miner solves the proof-of-work, it broadcasts the block
to network nodes and if the block is valid it is added to the blockchain. The first transaction in
the block is the coinbase transaction that creates a new coin owned by the creator of the
block. An algorithm ensures that a new block is generated every 10 minutes (600 seconds) on
average. The block validation rules described here ensure that BSV nodes stay in consensus
with other nodes. There are several rules that must be respected for a block to be valid. A
node is responsible for processing, validating, and relaying the block and its transactions. A
node is distinct on the network from miners and wallets. A BSV node is a piece of software
that connects to other nodes in a network and communicates via peer-to-peer messages.
Nodes use the verack protocol to communicate and perform full validation checks, including:

1. Connecting to the network and peers.
2. Acquiring block headers.
3. Validating all blocks.
4. Validating all transactions.

2/9

Block Header

Block headers are serialized in the 80-byte format comprising six fields: version, previous
block hash, merkle root hash, timestamp, difficulty target, and nonce. The block header is
hashed as part of the proof-of-work algorithm, making the serialized header format part of the
consensus rules. The hash of the block header is the unique signature of the block. The block
header hash is included in the next block that is mined. The block header includes a pointer to
the previous block that links them in the blockchain. The block header requires the following
six fields. Note that the hashes are in internal byte order; all other values are in little-endian
order.

Field Size
(bytes)

Data
type

Description

nVersion 4 int32_t The block version number indicates which set of
block validation rules to follow.

hashPrevBloc
k

32 uint256 The SHA256(SHA256(Block_Header)) message
digest of the previous block’s header.

hashMerkleRo
ot

32 uint256 The message digest of the Merkle root.

nTime 4 uint32_
t

Current timestamp in seconds since
1970-01-01T00:00 UTC (Unix time).

nBits 4 uint32_
t

Difficulty target for the proof-of-work for this block.

nNonce 4 uint32_
t

32-bit number (starts at 0) used to generate this block
(the "nonce").

Block Version

The block version number is a signed 4 byte integer (int32_t) that indicates which set of block
validation rules to follow. BSV version >= 4 is valid.

Previous Block Hash

The SHA256(SHA256(Block_Header)) message digest (hash) of the previous block’s header
in internal byte order. This ensures no previous block can be changed without also changing
this block’s header.

Merkle Root Hash

3/9

The Merkle tree is data structure that provides a record of all transactions in the block. Each
transaction in the block is a leaf in the Merkle tree and includes a hash of the previous
transaction hash. The Merkle root is derived from the hashes of all transactions included in
this block. The hash of the Merkle root ensures that no transaction can be modified without
modifying the block header.

The Merkle root is constructed from the list of transaction IDs in the order the transactions
appear in the block.

● The coinbase transaction TXID is always placed first.
● Any input within this block can spend an output which also appears in this block

(assuming the spend is otherwise valid). However, the TXID corresponding to the
output must be placed at some point before the TXID corresponding to the input. This
ensures that any program parsing block chain transactions linearly will encounter
each output before it is used as an input.

If a block only has a coinbase transaction, the coinbase TXID is used as the Merkle root hash.

If a block only has a coinbase transaction and one other transaction, the TXIDs of those two
transactions are placed in order, concatenated as 64 raw bytes, and then SHA256(SHA256())
hashed together to form the Merkle root.

If a block has three or more transactions, intermediate Merkle tree rows are formed. The
TXIDs are placed in order and paired, starting with the coinbase transaction's TXID. Each
pair is concatenated together as 64 raw bytes and SHA256(SHA256()) hashed to form a
second row of hashes. If there are an odd (non-even) number of TXIDs, the last TXID is
concatenated with a copy of itself and hashed. If there are more than two hashes in the second
row, the process is repeated to create a third row (and, if necessary, repeated further to create
additional rows). Once a row is obtained with only two hashes, those hashes are concatenated
and hashed to produce the Merkle root.

TXIDs and intermediate hashes are always in internal byte order when they're concatenated,
and the resulting Merkle root is also in internal byte order when it's placed in the block
header.

Note that the Merkle root makes it possible in the future to securely verify that a transaction
has been accepted by the network using just the block header (which includes the Merkle
tree), eliminating the current requirement to download the entire blockchain.

Block Timestamp

The block timestamp is Unix epoch time when the miner started hashing the header according
to the miner's clock. The block timestamp must be greater than the median time of the
previous 11 blocks. Note that when validating the first 11 blocks of the chain, you will need to
know how to handle arrays of less than length 11 to get a median. A node will not accept a
block with a timestamp more than 2 hours ahead of its view of network-adjusted time.

Difficulty Target

The difficulty target is a 256-bit unsigned integer which a header hash must be less than or

4/9

equal to for that header to be a valid part of the block chain. The header field nBits provides
only 32 bits of space, so the target number uses a less precise format called "compact" which
works like a base-256 version of scientific notation. As a base-256 number, nBits can be
parsed as bytes the same way you might parse a decimal number in base-10 scientific
notation.

Although the target threshold should be an unsigned integer, the class from which the original
nBits implementation inherits properties from a signed data class, allowing the target
threshold to be negative if the high bit of the significand is set.

● When parsing nBits, the system converts a negative target threshold into a target of
zero, which the header hash can equal (in theory, at least).

● When creating a value for nBits, the system checks to see if it will produce an nBits
which will be interpreted as negative; if so, it divides the significand by 256 and
increases the exponent by 1 to produce the same number with a different encoding.
Difficulty is a measure of how difficult it is to find a hash below a given target. The
BSV network has a global block difficulty. Valid blocks must have a hash below the
difficulty target calculated from the nBits value. The current difficulty target is
available here: https://blockexplorer.com/api/status?q=getDifficulty.

Nonce

To be valid, a block include a nonce value that is the solution to the mining process. This
proof-of-work is verified by other BSV nodes each time they receive a block.

NOTE: The original purpose of the nonce was to manipulate it to find a solution to the
mining process. However, because mining devices now have hashrates in the terahash range,
the nonce field is too small. In practice, most block headers do not include a solution to the
mining process in the nonce. Instead, miners have try many different Merkle root hashes,
which is typically done by adding transactions or changing the coinbase TX. A nonce value is
nonetheless required.

The nonce is a 32-bit (4-byte) field whose value is arbitrarily set by miners to modify the
header hash and produce a hash that is less than the difficulty target with the required number
of leading zeros (currently 32) satisfies the proof-of-work.

An arbitrary number miners change to modify the header hash in order to produce a hash less
than or equal to the target threshold. If all 32-bit values are tested, the time can be updated or
the coinbase transaction can be changed and the Merkle root updated.

The nonce is an arbitrarily changed by miners to modify the header hash and produce a hash
less than the difficulty target. If all 32-bit values are tested, the time can be updated or the
coinbase transaction can be changed and the Merkle root updated.

Any change to the nonce will make the block header hash completely different. Since it is
virtually impossible to predict which combination of bits will result in the right hash, many
different nonce values are tried, and the hash is recomputed for each value until a hash
containing the required number of zero bits as set by the difficulty target is found. The
resulting hash has to be a value less than the current difficulty and so will have to have a
certain number of leading zero bits to be less than that. As this iterative calculation requires
time and resources, the presentation of the block with the correct nonce value constitutes

5/9

https://blockexplorer.com/api/status?q=getDifficulty
https://blockexplorer.com/api/status?q=getDifficulty

proof-of-work.

It is important to note that the proof-of-work can be verified by computing one hash with the
proper content, and is therefore very cheap. The fact that the proof is cheap to verify is as
important as the fact that it is expensive to compute.

6/9

Coinbase Transaction

The first transaction in the body of each block is a special transaction called the coinbase
transaction which is used to pay miners of the block. The coinbase transaction is required,
and must collect and spend any transaction fees paid by transactions included in the block.

A valid block is entitled to receive a block subsidy of newly created bitcoincash value, and it
must also be spent in the coinbase transaction. Together, the transaction fees and block
subsidy are called the block reward. A coinbase transaction is invalid if it tries to spend more
value than is available from the block reward. The subsidy plus fees is the maximum coinbase
payout, but note that it is valid for the coinbase to pay less.

The coinbase transaction must have one input spending from 000000000000000. The field
used to provide the signature can contain arbitrary data up to 100 bytes. The coinbase
transaction must start with the block height to ensure no two coinbase transactions have the
same transaction id (TXID).

The coinbase transaction has the following format:

Bytes Name Data type Description

32 hash (null) char[32]
A 32-byte null, as a coinbase has no
previous outpoint.

4
index

(UINT32_MAX)
uint32_t

0xffffffff, as a coinbase has no previous
outpoint.

Varies script bytes compactSize uint
The number of bytes in the coinbase script,
up to a maximum of 100 bytes.

Varies
(4)

height script

The block height of this block. Required
parameter. Uses the script language: starts
with a data-pushing opcode that indicates
how many bytes to push to the stack
followed by the block height as a
little-endian unsigned integer. This script
must be as short as possible, otherwise it
may be rejected. The data-pushing opcode
is 0x03 and the total size is four bytes.

4 sequence uint32_t Sequence number.

Although the coinbase script is arbitrary data, if it includes the bytes used by any
signature-checking operations such as OP_CHECKSIG, those signature checks will be
counted as signature operations (sigops) towards the block's sigop limit. To avoid this, you

7/9

can prefix all data with the appropriate push operation. See Transaction format for details on
opcodes.

8/9

Block Serialization

Blocks must be serialized in binary format for transport on the network. Under current BSV
consensus rules, a BSV block is valid if its serialized size is not more than 32MB (32,000,000
bytes). All fields described below count towards the serialized size limit.

Bytes Name Data type Description

80 block header block_header
The block header in the proper format. See
Block Header.

Varies txn_count compactSize uint
Total number of transactions in this block,
including the coinbase transaction.

Varies txns raw transaction

Each transaction in this block in this block,
one after another, in raw transaction format.
Transactions must appear in the data stream
in the same order their TXIDs appeared in
the first row of the Merkle tree.

The serialized (raw) form of each block header is hashed as part of the proof-of-work, making
the serialized block header part of the BSV consensus rules. As part of the mining process, the
block header is hashed repeatedly to create proof-of-work. BSV uses
SHA256(SHA256(Block_Header)) to hash the block header. You must ensure that the block
header is in the proper byte-order before hashing. The following serialization rules apply to
the block header:

● Both hash fields use double-hashing (SHA256(SHA256(DATA))) and are serialized
in internal byte order, which means the standard order in which hash message digests
are displayed as strings.

● The values for all other fields in the block header are serialized in little-endian order.
Note that when displayed via a block browser or query, the ordering is big-endian.

9/9

