

Transaction Spec for
Bitcoin

Layout: Specification
Date: 2017-08-26

Activation: 1515888000
Version: 1.0

This section of the Bitcoin (BSV) specification ("spec") documents the ​transaction data
structure for implementing a compatible BSV client, including transaction format, opcodes,
and examples.

1/12

Transaction

A ​transaction is one of the two base primitives in the BSV system, the other being a ​block​.
Primitive in this context means that it is one of the data types for which the BSV spec
provides built-in support. A transaction is a transfer of BSV that is broadcast to the network
and collected into blocks. A transaction typically references previous transaction outputs as
new transaction ​inputs and dedicates all input Bitcoincash values to new outputs.
Transactions are not encrypted, so it is possible to browse and view every transaction ever
collected into a block. Once transactions are buried under enough confirmations they can be
considered irreversible. Transaction comprises a ​signature and ​redeem script pair​, which
provides flexibility in releasing outputs. A serialized transaction contains an input and an
output.

Transaction requirements

A transaction that meets the criteria documented here is said to be standard. Standard
transactions are accepted into the mempool and relayed by nodes on the network. This ensures
that nodes have a similar looking mempool so that the system behave predictably. Standard
transaction outputs nominate addresses, and the redemption of any future inputs requires a
relevant signature. Transaction requirements:

● Transaction size: < 100k
● Version must be 1 or 2
● Signature script must be data push only
● Script size must be 1650 or less

NOTE: A BSV node should be able to process non-standard transactions as well. Even if a
node cannot successfully relay a non-standard transaction, it should not crash if it ends up
having to process one of those transactions.

Transaction Input

Inputs to a transaction include the outpoint, signature script, and sequence.

An input is a reference to an output from a previous transaction. Multiple inputs are often
listed in a transaction. All of the new transaction's input values (that is, the total coin value of
the previous outputs referenced by the new transaction's inputs) are added up, and the total
(less any transaction fee) is completely used by the outputs of the new transaction. Previous tx
is a hash of a previous transaction. Index is the specific output in the referenced transaction.
scriptSig is the first half of a script (discussed in more detail later).

Transaction Output

Outputs from a transaction include the BSV amount and redeem script which is used to spend
the output and sets up parameters for the signature script. Redeem scripts should not use
OP_CODES.

2/12

Opcodes

The opcodes used in the pubkey scripts of standard transactions are as follows.

0x00 to 0x4e

There are arious data pushing opcodes from 0x00 to 0x4e (1--78) that must be used must be
used to push signatures and public keys onto the stack.

OP_TRUE/OP_1, OP_2 through OP_16

OP_TRUE/OP_1 (0x51) and OP_2 through OP_16 (0x52--0x60) push the values 1 through
16 to the stack.

OP_CHECKSIG

OP_CHECKSIG consumes a signature and a full public key, and pushes true onto the stack if
the transaction data specified by the SIGHASH flag was converted into the signature using
the same ECDSA private key that generated the public key. Otherwise, it pushes false onto
the stack.

OP_DUP

OP_DUP pushes a copy of the topmost stack item on to the stack.

OP_HASH160

OP_HASH160 consumes the topmost item on the stack, computes the
RIPEMD160(SHA256()) hash of that item, and pushes that hash onto the stack.

OP_EQUAL

OP_EQUAL consumes the top two items on the stack, compares them, and pushes true onto
the stack if they are the same, false if not.

OP_VERIFY

OP_VERIFYconsumes the topmost item on the stack. If that item is zero (false) it terminates
the script in failure.

OP_EQUALVERIFY

OP_EQUALVERIFY runs OP_EQUAL and then OP_VERIFY in sequence.

OP_CHECKMULTISIG

OP_CHECKMULTISIGconsumes the value (n) at the top of the stack, consumes that many of
the next stack levels (public keys), consumes the value (m) now at the top of the stack, and

3/12

consumes that many of the next values (signatures) plus one extra value.

The "one extra value" it consumes is the result of an off-by-one error in the original Bitcoin
implementation. This value is not used in Bitcoincash, so signature scripts prefix the list of
secp256k1 signatures with a single OP_0 (0x00).

OP_CHECKMULTISIG compares the first signature against each public key until it finds an
ECDSA match. Starting with the subsequent public key, it compares the second signature
against each remaining public key until it finds an ECDSA match. The process is repeated
until all signatures have been checked or not enough public keys remain to produce a
successful result.

Because public keys are not checked again if they fail any signature comparison, signatures
must be placed in the signature script using the same order as their corresponding public keys
were placed in the pubkey script or redeem script.

The OP_CHECKMULTISIG verification process requires that signatures in the signature
script be provided in the same order as their corresponding public keys in the pubkey script or
redeem script.

OP_RETURN

OP_RETURN terminates the script in failure when executed.

4/12

Address Conversion

The hashes used in P2PKH and P2SH outputs are commonly encoded as Bitcoincash
addresses. This is the procedure to encode those hashes and decode the addresses.

First, get your hash. For P2PKH, you RIPEMD-160(SHA256()) hash a ECDSA public key
derived from your 256-bit ECDSA private key (random data). For P2SH, you
RIPEMD-160(SHA256()) hash a redeem script serialized in the format used in raw
transactions.

Taking the resulting hash:

1. Add an address version byte in front of the hash. The version bytes commonly used by
Bitcoincash are:
○ 0x00 for P2PKH addresses on the main Bitcoincash network (mainnet)
○ 0x6f for P2PKH addresses on the Bitcoincash testing network (testnet)
○ 0x05 for P2SH addresses on mainnet
○ 0xc4 for P2SH addresses on testnet

2. Create a copy of the version and hash; then hash that twice with SHA256:
SHA256(SHA256(version . hash))

3. Extract the first four bytes from the double-hashed copy. These are used as a checksum
to ensure the base hash gets transmitted correctly.

4. Append the checksum to the version and hash, and encode it as a base58 string:
BASE58(version . hash . checksum).

The code can be traced using the [base58 header file][core base58.h].

To convert addresses back into hashes, reverse the base58 encoding, extract the checksum,
repeat the steps to create the checksum and compare it against the extracted checksum, and
then remove the version byte.

5/12

Raw Transaction Format

Bitcoincash transactions are broadcast between peers in a serialized byte format, called raw
format. It is this form of a transaction which is SHA256(SHA256()) hashed to create the
TXID and, ultimately, the merkle root of a block containing the transaction---making the
transaction format part of the consensus rules.

Bitcoincash Core and many other tools print and accept raw transactions encoded as hex.

A raw transaction has the following top-level format:

Bytes Name Data Type Description

4 version uint32_t

Transaction version number; currently version
1. Programs creating transactions using newer
consensus rules may use higher version
numbers.

Varies tx_in count compactSize uint Number of inputs in this transaction.

Varies tx_in txIn Transaction inputs. See description of txIn
below.

Varies tx_out count compactSize uint Number of outputs in this transaction.

Varies tx_out txOut Transaction outputs. See description of txOut
below.

4 lock_time uint32_t A time (Unix epoch time) or block number.

A transaction may have multiple inputs and outputs, so the txIn and txOut structures may
recur within a transaction. CompactSize unsigned integers are a form of variable-length
integers; they are described in CompactSize unsigned integer.

6/12

TxIn: Transaction Input

Each non-coinbase input spends an outpoint from a previous transaction.

Bytes Name Data Type Description

36 previous_output outpoint The previous outpoint being spent. See
description of outpoint below.

Varies script bytes compactSize uint The number of bytes in the signature script.
Maximum is 10,000 bytes.

Varies signature script char[]
Script that satisfies conditions in the
outpoint's pubkey script. Should only contain
data pushes.

4 sequence uint32_t Sequence number. Default is 0xffffffff.

7/12

Outpoint

The outpoint is a reference to an output from a previous transaction. Because a single
transaction can include multiple outputs, the outpoint structure includes both a TXID and an
output index number to refer to the specific part of a specific output.

Bytes Name Data Type Description

32 hash char[32] The TXID of the transaction holding the output to spend.
The TXID is a hash provided here in internal byte order.

4 index uint32_t The output index number of the specific output to spend
from the transaction. The first output is 0x00000000.

8/12

TxOut: Transaction Output

Each output spends a certain number of Satoshis, placing them under control of anyone who
can satisfy the provided pubkey script.

Bytes Name Data Type Description

8 value int64_t

Number of Satoshis to spend. May be zero;
the sum of all outputs may not exceed the
sum of Satoshis previously spent to the
outpoints provided in the input section.
(Exception: coinbase transactions spend the
block subsidy and collected transaction fees.)

1+ pk_script bytes compactSize uint Number of bytes in the pubkey script.
Maximum is 10,000 bytes.

Varies pk_script char[] Defines the conditions which must be
satisfied to spend this output.

9/12

CompactSize Unsigned Integers

The raw transaction format and several peer-to-peer network messages use a type of
variable-length integer to indicate the number of bytes in a following piece of data.

The source code and this document refers to these variable length integers as compactSize.
Because it's used in the transaction format, the format of compactSize unsigned integers is
part of the consensus rules.

For numbers from 0 to 252, compactSize unsigned integers look like regular unsigned
integers. For other numbers up to 0xffffffffffffffff, a byte is prefixed to the number to indicate
its length---but otherwise the numbers look like regular unsigned integers in little-endian
order. For example, the number 515 is encoded as 0xfd0302.

Value Bytes Used Format
>= 0 && <= 252 1 uint8_t

>= 253 && <= 0xffff 3 0xfd followed by the number as
uint16_t

>= 0x10000 && <= 0xffffffff 5 0xfe followed by the number as
uint32_t

>= 0x100000000 && <= 0xffffffffffffffff 9 0xff followed by the number as
uint64_t

10/12

Signature Script

The purpose of the signature script (scriptSig) is to ensure that the spender is a legitimate
spender, that is, evidence of private key held.

The scriptSig contains two components: a signature and a public key. The public key must
match the hash given in the script of the redeemed output. The public key is used to verify the
redeemers signature, which is the second component. More precisely, the second component
is an ECDSA signature over a hash of a simplified version of the transaction. It, combined
with the public key, proves the transaction was created by the real owner of the address in
question.

Signature scripts are not signed, so anyone can modify them. This means signature scripts
should only contain data and data-pushing opcodes which can't be modified without causing
the pubkey script to fail. Placing non-data-pushing opcodes in the signature script currently
makes a transaction non-standard, and future consensus rules may forbid such transactions
altogether. (Non-data-pushing opcodes are already forbidden in signature scripts when
spending a P2SH pubkey script.)

Sequence

Check lock time verify (s4)

Check sequence verify (s4)

11/12

Standard Transaction Format Examples

P2SH

 23-bytes
 OP_HASH160
 <reedem script hash>
 OP_EQUAL
 Use address version=1 and hash=<reedem script hash>

P2PKH

 25 bytes
 OP_DUP
 OP_HASH160
 <public key="" hash="">
 OP_EQUALVERIFY
 OP_CHECKSIG
 Use address version=0 and hash= [public key="" hash=""]

P2PK

 35 or 67 bytes
 <public key="">
 OP_CHECKSIG
 Use address version=0 and hash=HASH160([public key=""])

Bare multisig

 <n: [0-20]="">
 <pubkey 0="">
 ...
 <pubkey n="">
 <(null)>
 OP_CHECKMULTISIG

NOTE:​ Bare multisig (which isn't wrapped into P2SH) is limited to 3-of-3.

Data carrier

 Limited to one per transaction
 Limited to 223 bytes
 OP_RETURN
 <push data="">

NOTE:​ Multiple pushes of data are allowed.

12/12

